Constant Time per Edge Is Optimal in Rooted Tree Networks

نویسنده

  • Michael Mitzenmacher
چکیده

We analyze how the expected packet delay in rooted tree networks is aaected by the distribution of time needed for a packet to cross an edge using stochastic comparison methods. Our result generalizes previously known results that the delay when the crossing time is exponentially distributed yields an upper bound for the expected delay when the crossing time is constant on this class of of networks. Unlike previous work, we do not assume Poisson arrivals. Our result also extends to a variety of service distributions, and it can be used to bound the expected value of all convex, increasing functions of the packet delays. An interesting corollary of our work is that in rooted tree networks, if one can change the distribution of the time to cross an edge while keeping the expectation xed, the strategy that minimizes the expected delay and the expected maximum delay is to make the time to cross an edge constant. Our result also holds in mulitcasting rooted tree networks, where a single message can have several possible destinations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Dynamic Edge-Disjoint Embeddings of Complete Binary Trees into Hypercubes

The double-rooted complete binary tree is a complete binary tree where the path (of length ) between the children of the root is replaced by a path of length . It is folklore that the double-rooted complete binary tree is a spanning tree of the hypercube of the same size. Unfortunately, the usual construction of an embedding of a double-rooted complete binary tree into the hypercube does not pr...

متن کامل

Optimal Dynamic Embeddings of Complete Binary Trees into Hypercubes

It is folklore that the double-rooted complete binary tree is a spanning tree of the hypercube of the same size. Unfortunately, the usual construction of an embedding of a double-rooted complete binary tree into a hypercube does not provide any hint on how this embedding can be extended if each leaf spawns two new leaves. In this paper, we present simple dynamic embeddings of double-rooted comp...

متن کامل

4-PLACEMENT OF ROOTED TREES

A tree T of order n is called k-placement if there are k edge-disjoint copies of T into K_{n}. In this paper we prove some results about 4-placement of rooted trees.

متن کامل

Generalized Huffman Coding for Binary Trees with Choosable Edge Lengths

In this paper we study binary trees with choosable edge lengths, in particular rooted binary trees with the property that the two edges leading from every non-leaf to its two children are assigned integral lengths l1 and l2 with l1 + l2 = k for a constant k ∈ N. The depth of a leaf is the total length of the edges of the unique root-leaf-path. We present a generalization of the Huffman Coding t...

متن کامل

Approximating the minmax rooted-tree cover in a tree

Given an edge-weighted rooted tree T and a positive integer p ( n), where n is the number of vertices in T , we cover all vertices in T by a set of p subtrees each of which contains the root r of T . The minmax rooted-tree cover problem asks to find such a set of p subtrees so as to minimize the maximum weight of the subtrees in the set. In this paper, we propose an O(n) time (2 + ε)-approximat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996